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Abstract. We examine the unitarity issue in the recently proposed time-ordered perturbation theory on
noncommutative (NC) spacetime. We show that unitarity is preserved as long as the interaction Lagrangian
is explicitly hermitian. We explain why it makes sense to distinguish the hermiticity of the Lagrangian
from that of the action in perturbative NC field theory and how this requirement fits in this framework.

1 Introduction

Quantum field theory on non-commutative (NC) space-
time has attracted a lot of attention since it was shown
to appear as a limit of string theory in the presence of a
constant NS–NS B field background [1]. New features in
NC field theory have been found, such as the ultraviolet–
infrared mixing [2], violation of unitarity [3,4] and causal-
ity [5], which are very alien to ordinary field theory. These
results are largely based on the understanding that field
theory on NC spacetime may be formulated through the
Moyal star product of functions on ordinary spacetime [6]
and that the only modification in perturbation theory is
the appearance of momentum dependent NC phases at the
interaction vertices [7]. This naive approach in perturba-
tion theory has been scrutinized recently in the context of
the unitarity problem with the suggestion that the time-
ordered product is not properly defined [8]. It has also
been shown explicitly that unitarity is preserved for the
one-loop two-point function of ϕ3 theory in the approach
of the Yang–Feldman equation [9].

In a previous work [10], we have reconsidered the is-
sue of NC perturbation theory formulated in terms of
the Moyal product. We assumed that perturbation the-
ory can still be developed in the time-ordered expansion
of a formally unitary time evolution operator specified by
the interaction Lagrangian and that the usual concepts
of time-ordering and commutation relations for free fields
are still applicable. We found that the result is the old-
fashioned, time-ordered perturbation theory (TOPT) [11,
12] naturally extended to the NC case. In this framework,
NC phases at the interaction vertices are evaluated at on-
shell momenta of positive or negative energy depending
on the direction of time flow and are thus independent
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of the zeroth components of the generally off-shell mo-
menta of participating particles. The analyticity proper-
ties of Green functions in the complex plane of the zeroth
component are thus significantly modified. We explained
how this in turn led to the result that this non-covariant
formalism of TOPT cannot be recast into the seemingly
covariant form of the naive approach when time does not
commute with space. The whole picture of perturbation
theory is thus altered; and this difference appears already
at tree level in perturbation. It is then quite reasonable
to ask whether some of the important statements made in
the naive approach will be changed as well. In this work
we address the issue of unitarity in the new framework
and our conclusion on perturbative unitarity will indeed
be different.

In TOPT a process is described as a time sequence
of transitions between physical intermediate states. The
unitarity property in the TOPT formalism of ordinary
field theory is usually transparent. Assuming that NC field
theory is renormalizable at higher orders in perturbation
theory, the unitarity proof in the TOPT framework for
the usual field theory [12] almost goes through without
change, up to one caveat which is specific to NC the-
ory. Namely, the interaction Lagrangian must be explic-
itly hermitian. While the hermiticity of the Lagrangian
guarantees that of the action, the opposite is not always
automatic in NC field theory. In the naive approach one
can appeal to the cyclicity of the spacetime integral of
star products for the hermiticity of the action even if one
begins with a Lagrangian which is not explicitly hermi-
tian, e.g., Lint = −gϕ† � ϕ � σ. However, as we stressed
in [10], it is important to notice that the time-ordering
procedure does not commute with the star multiplication
when time is involved in NC. Strictly insisting on this
led to the conclusion that the naive, seemingly covari-
ant approach of NC perturbation theory cannot be recov-
ered from its TOPT formalism. Furthermore, the manip-
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ulation with star products in perturbation theory should
not interfere with the time-ordering procedure. And as
we shall show below, this has implications for the unitar-
ity problem: to guarantee perturbative unitarity the in-
teraction Lagrangian has to be explicitly hermitian. This
means that the above Lagrangian should be replaced by
Lint = −g/2(ϕ† � ϕ � σ + σ � ϕ† � ϕ). While this does no
harm to the action and quantities derived from it, it makes
a big difference in the fate of unitarity in NC theory.

In the next section we first make an ab initio calcula-
tion of the one-loop contribution to the scalar self-energy.
The purpose is to show explicitly that the prescriptions
given in [10] indeed apply as well to higher orders in per-
turbation. We confirm its unitarity as required for gener-
ally off-shell and amputated Green functions. This is fol-
lowed by the study of a four-point function arising at one
loop using the above prescriptions. Then, we show that
it is necessary to make the interaction Lagrangian explic-
itly hermitian to preserve the perturbative unitarity. This
problem already appears at tree level as we shall illustrate
by a four-point function. We explain how this requirement
fits in the framework of TOPT. We give a summary in the
last section.

2 Demonstration of perturbative unitarity

We assume that perturbative field theory on NC space-
time formulated through the Moyal star product of field
operators of ordinary spacetime functions can still be de-
veloped in terms of vacuum expectation values of time-
ordered products of field operators. The basic concepts
such as time-ordering and commutation relations for free
fields are also assumed to be applicable. This is also the
common starting point followed in the literature so far. Of
course, there might be a drastic change with these assump-
tions in NC theory, but the philosophy is that we would
like to avoid deviation from the well-established concepts
as much as possible. But still, as we showed in the previous
work, great differences amongst different approaches arise
at a later stage when coping with time-ordered products.
In this section, we provide one more difference concerning
the fate of unitarity which is important for a theory to
be consistent as a quantum theory. As we remarked in the
Introduction, unitarity is almost obvious in the framework
of TOPT on a formal level; however, an explicit demon-
stration of this in some examples is still instructive and
interesting as we shall present below. Furthermore, it also
leads to an observation concerning the hermiticity of the
interaction Lagrangian that has been ignored before in the
context of NC field theory.

2.1 Self-energy of real scalar field

Let us first study the scalar two-point function that is
most frequently discussed in the literature on the unitar-
ity issue. We consider the contribution arising from the
following interaction:

Lint = −g (χ � ϕ � π + π � ϕ � χ) , (1)

where all fields are real scalars. We have deliberately used
three different fields. On the one hand this makes our cal-
culation more general than those considered so far, and on
the other hand it avoids unnecessary complications arising
from many possible contractions amongst identical fields
which may be recovered later on by symmetrization.

The one-loop contribution to the ϕ two-point function
is

G(x1, x2) = −g2

2!

∫
d4x3

∫
d4x4A,

A = 〈0|T (ϕ1ϕ2(χ � ϕ � π + π � ϕ � χ)3
× (χ � ϕ � π + π � ϕ � χ)4) |0〉, (2)

where from now on we use the indices of coordinates to
specify the fields evaluated at corresponding points when
no confusion arises. Our calculation is based on the fol-
lowing commutation relation between the positive- and
negative-frequency parts of the field operator, e.g., ϕ:

ϕ(x) = ϕ+(x) + ϕ−(x),[
ϕ+(x), ϕ−(y)

]
= D(x − y)

=
∫

d3µp exp[−ip+ · (x − y)], (3)

where d3µp = d3p[(2π)32Ep]−1 is the standard phase
space measure with Ep = (p2+m2

ϕ)1/2, and pµ
λ = (λEp,p)

(λ = ±) is the on-shell momentum with positive or neg-
ative energy. The calculation proceeds the same way as
shown in [10] although new complications arise due to the
loop.

We first compute the contractions of the χ and π fields
at the interaction points x3 and x4. For x0

3 > x0
4, only χ−

4
and π−

4 , which are on the right, and χ+
3 and π+

3 , which are
on the left, can contribute. Shifting their positions using
relations like (3) leads to the result

A = +〈0| · · ·D34(χ) � ϕ3 · · ·ϕ4 � D34(π) · · · |0〉
+

∫
d3µp〈0| · · · e−ipπ

+·x3 � ϕ3 � D34(χ)

× · · · � ϕ4 � e+ipπ
+·x4 |0〉 + (χ ↔ π), (4)

where D34 = D(x3 − x4) and the argument or index χ
(π) refers to the corresponding field and its mass being
used. The dots represent possible positions for ϕ1 and ϕ2
fields appropriate to the time order. The first two terms
originate from the diagonal and crossing contractions re-
spectively, while the last arises because the interaction is
symmetric in χ and π fields. A little explanation on the
star is necessary. Sometimes the same single � refers to
both x3 and x4. This only means that the star multipli-
cation is to be done separately with respect to x3 and x4.
There never arises a case in which a star product is with
respect to two different points since the only source of it
is the interaction Lagrangian which is defined at a single
point. This is a new feature at loop level: that star prod-
ucts at different points get entangled. In principle this is
not a problem and should not be confusing when we are
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careful enough, but it is a problem with notation. For ex-
ample, the second term in the above equation may also be
rewritten in a compact form as the first one; but we find
that for this purpose we have to introduce more star sym-
bols and specify which refers to which. This is even worse
when more vertices are involved. For our aim of express-
ing the final result in momentum space, we find this is not
worthwhile and it is much better to leave it as it stands.
The result for the opposite case of x0

3 < x0
4 is obtained by

interchanging the indices 3 and 4.
Next we contract the ϕ fields. There are 4! time or-

ders which we certainly do not have to consider one by
one. They are classified into six groups: T12T34, T34T12,
T13T24, T24T13, T14T23 and T23T14, where TijTmn stands
for (x0

i andx0
j ) > (x0

mandx0
n). We only need to consider the

first three groups while the last three can be obtained from
the third by either 3 ↔ 4, or 1 ↔ 2, or both. The first
two groups are relatively easy to compute. For example,
for x0

1 > x0
2 > x0

3 > x0
4 which belongs to one of the four

possibilities in the first group, we have

A = 〈0|ϕ1ϕ2 · · ·ϕ3 · · ·ϕ4 · · · |0〉, (5)

where the dots now represent the result from χ and π con-
tractions connected by stars which are computed above.
There are actually four terms of course. Up to discon-
nected terms, ϕ1,2 may be replaced by ϕ+

1,2 and thus ϕ3,4

by ϕ−
3,4. Pushing further ϕ+

1,2 to the right results in the
following:

A =

[
D34(χ) � (D23D14) � D34(π)

+
∫

d3µpe−ipπ
+·x3 � (D23 � D34(χ) � D14) � e+ipπ

+·x4

+ (1 ↔ 2)

]
+ (χ ↔ π), (6)

where the D functions without an argument refer to the
ϕ field. The above is symmetric in x1,2 and thus applies
to the case of (x0

1andx0
2) > x0

3 > x0
4. In this way we obtain

the results for the first two groups of time orders,

A = τ34τ13τ23

{[
D34(χ) � (D23D14) � D34(π)

+
∫

d3µpe−ipπ
+·x3 � (D23 � D34(χ) � D14) � e+ipπ

+·x4

+ (1 ↔ 2)

]
+ (χ ↔ π)

}
+ (3 ↔ 4), forT12T34, (7)

A = τ34τ41τ42

{[
D34(χ) � (D32D41) � D34(π)

+
∫

d3µpe−ipπ
+·x3 � (D32 � D34(χ) � D41) � e+ipπ

+·x4

+ (1 ↔ 2)

]
+ (χ ↔ π)

}
+ (3 ↔ 4), forT34T12, (8)

where τjk = τ(x0
j − x0

k) is the step function.
The contractions for the case T13T24 is more compli-

cated. Consider one of the four orders, x0
1 > x0

3 > x0
2 > x0

4,
for which we have the following structure:

A = 〈0| · · ·ϕ1ϕ3 · · ·ϕ2ϕ4 · · · |0〉. (9)

Note that there is no problem for ϕ1,2 to pass over the
dots which contain the star products of c-number func-
tions with respect to x3,4. Then, ϕ1ϕ3 may be replaced
by (ϕ+

1 ϕ+
3 + D13) and ϕ2ϕ4 by (ϕ−

2 ϕ−
4 + D24). Up to

disconnected terms, the remaining product of operators
contributes a term D32 · · ·D14 so that,

A = D34(χ) � (D13D24 + D32D14) � D34(π)

+
∫

d3µpe−ipπ
+·x3 � (D13 � D34(χ) � D24 (10)

+ D32 � D34(χ) � D14) � e+ipπ
+·x4 + (χ ↔ π).

The complete sum for the case T13T24 can be put in a
compact form,

A = (τ1324 + τ1342 + τ3124 + τ3142)

×
{

D34(χ) � (D32D14) � D34(π)

+
∫

d3µpe−ipπ
+·x3 � (D32 � D34(χ) � D14) � e+ipπ

+·x4

}

+
∑
λ,λ′

τλ
13τ(13)(24)τ

λ′
24

{
D34(χ) � (Dλ

13D
λ′
24) � D34(π)

+
∫

d3µpe−ipπ
+·x3 � (Dλ

13 � D34(χ) � Dλ′
24) � e+ipπ

+·x4

}

+ (χ ↔ π), (11)

where τijmn = τijτjmτmn, τ(ij)(mn) = τ(min(x0
i , x

0
j ) −

max(x0
m, x0

n)), and

τλ
jk =

{
τjk,

τkj ,
Dλ

jk =

{
Djk, forλ = +,

Dkj , forλ = −.
(12)

Now we show how to sum over 16 pairs of terms (not
counting χ ↔ π) so obtained in a desired form; namely,
the connected contribution contains only functions D±

13,
D±

14, D±
23, D±

24 and D±
34 which should be accompanied by

the corresponding step functions. We found four of them
are already in the desired form. There are eight pairs, each
of which is a combination of contributions from two time
orders; for example, τ13τ23τ34 and τ13τ32τ24 unify precisely
into the desired one τ13τ24τ34. Each of the remaining four
pairs is again a combination of two contributions with one
of them being of the same type as the first term in (11).
They also unify comfortably into the desired time order;
for example, the time order in the first term of (11) unifies
with the one, τ32τ21τ14 from the other contribution, into
τ14τ34τ32. Therefore, we have finally,

A =
∑

λ1,λ2,λ

{
τλ1
13 τλ2

24 τλ
34

[
Dλ

34(χ) � (Dλ1
13Dλ2

24 ) � Dλ
34(π)

]
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+ (3 ↔ 4)

}

+
∑

λ1,λ2

{
τλ1
13 τλ2

24

∫
d3µp

×
[
e−ipπ

+·x3 � (Dλ1
13 � D34(χ) � Dλ2

24 ) � e+ipπ
+·x4

+ e−ipπ
+·x4 � (Dλ2

24 � D43(χ) � Dλ1
13 ) � e+ipπ

+·x3

]

+ (3 ↔ 4)

}
+ (χ ↔ π). (13)

Upon integrating over x3,4, (3 ↔ 4) gives a factor of 2
to cancel 1/2! in (2) from the perturbation series, as ex-
pected. The trick to proceed further is the same as em-
ployed in [10]. Using

τλ
jk =

iλ
2π

∫ ∞

−∞
ds

exp[−is(x0
j − x0

k)]
s + iελ

,

Dλ
jk =

∫
d3µp exp[−ipλ · (xj − xk)], (14)

we can combine the τ function and its related 3-momen-
tum integral into a 4-momentum integral. To make the
result more symmetric in internal χ and π lines, we may
replace τλ

34 by its square. We checked that the result is
identical to the one using one factor of τλ

34 as it must be
as in ordinary field theory. We skip the further details and
write down the result directly:

G(x1, x2)

= −g2
∫

d4p

(2π)4

∫
d4q

(2π)4

∫
d4p1

(2π)4

∫
d4p2

(2π)4

×
∑

λ1,λ2,λ

{
iPλ(p)iPλ(q)iPλ1(p1)iPλ2(p2)e−ip1·x1e−ip2·x2

× (2π)4δ4(p1 + p2)(2π)4δ4(p + q − p1)

× (NC vertices)
}

, (15)

where p, q, p1,2 refer to the π, χ, ϕ fields respectively so
that their masses are implicit in on-shell quantities such
as Ep and pλ, and

Pλ(k) =
λ

2Ek[k0 − λ(Ek − iε)]

=
ηλ(k)

k2 − m2 + iε
, (16)

with ηλ(k) = 1/2(1 + λk0/Ek). The vertices have the fac-
torized form,

(NC vertices)

=
[
e−i(qλ,−p1λ1 ,pλ) + e−i(pλ,−p1λ1 ,qλ)

]

×
[
e−i(qλ,+p2λ2 ,pλ) + e−i(pλ,+p2λ2 ,qλ)

]
, (17)

with (k1, k2, · · · , kn) =
∑

i<j ki ∧ kj and p ∧ q = 1/2θµνpµ

qν .

Transforming into momentum space is now straight-
forward,

Ĝ(k1, k2) =
2∏

j=1

[∫
d4xje−ikj ·xj

]
G(x1, x2)

= −g2(2π)4δ4(k1 + k2)
∑

λ1,λ2

iPλ1(k1)iPλ2(k2)

×
∑

λ

∫
d4p

(2π)4

∫
d4q

(2π)4
(2π)4δ4(p + q − k1)

× iPλ(p)iPλ(q)(NC vertices), (18)

where k1,2 are the momenta flowing into the diagram. We
have reversed the signs of variables λj , λ and p, q so that
the only change in NC vertices is, p1λ1 → k1λ1 , p2λ2 →
k2λ2 . As we pointed out in [10], it is important to notice
that the zeroth components p0 and q0 are not involved in
NC vertices which contain only on-shell momenta of pos-
itive or negative energy. This fact changes the analyticity
properties significantly. The p0, q0 integrals can thus be
finished, one by the δ function, the other by a contour in
its complex plane, with the result,

i−1Ĝ(k1, k2)i−1(k2
1 − m2

ϕ)i−1(k2
2 − m2

ϕ)

= −g2(2π)4δ4(k1 + k2)
∑

λ1,λ2

ηλ1(k1)ηλ2(k2)

×
∑

λ

∫
d3µp

∫
d3µq(2π)3δ3(p + q − k1)

× (NC vertices)
λk0

1 − Ep − Eq + iε
, (19)

which is exactly the amputated two-point function as can
be obtained directly from the prescriptions given in [10].

We are now ready to examine the unitarity problem.
We found that unitarity holds true in a detailed sense.
Namely, as in ordinary field theory, it holds not only for
the on-shell transition matrix but also for the off-shell
amputated Green function. In the current non-covariant
formalism, it even holds for separate configurations of ex-
ternal time direction parameters λj . This is not surprising
since, if kinematically allowed, we can obtain the S-matrix
elements for all possible channels of physical processes
from the same Green function, which just correspond to
different configurations of λj and satisfy the unitarity re-
lation. Let us check the following unitarity relation for
the above example. Assuming T ({ki, λi} → {kf , λf}) is
the transition matrix or the amputated Green function
for the process i → f with incoming momenta and time
parameters {ki, λi} and outgoing ones {kf , λf}, we have

− i [T ({ki, λi} → {kf , λf}) − T ∗({kf , λf} → {ki, λi})]

=
∑

n

n∏
j=1

[∫
d3µpj

]

× T ({ki, λi} → n)T ∗({kf , λf} → n), (20)

where n is a physical intermediate state with n particles.
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Following the above convention, we change in our ex-
ample k2 → −k2 and λ2 → −λ2 so that k2λ2 → −k2λ2 ,
and the transition matrix becomes

T ({k1, λ1} → {k2, λ2}) = −g2(2π)4δ4(k1 − k2)

×
∑

λ

∫
d3µp

∫
d3µq(2π)3δ3(p + q − k1)

× V (1 → n)V (2 → n)
λk0

1 − Ep − Eq + iε
, (21)

with V (j → n) = 2 cos(qλ,−kjλj
, pλ) being real so that

only the physical threshold can develop an imaginary part,

−i [T ({k1, λ1} → {k2, λ2}) − T ∗({k2, λ2} → {k1, λ1})]
= +g2(2π)4δ4(k1 − k2)

×
∑

λ

∫
d3µp

∫
d3µq(2π)3δ3(p + q − k1)

×2πδ(λk0
1 − Ep − Eq)V (1 → n)V (2 → n). (22)

For a given sign of k0
1, only one term in the sum over λ

actually contributes while the sum automatically includes
both cases. For k0

1 < 0, it is physically better to work with
the inverse process. The above is precisely what we obtain
for the right-hand side of (20) using the prescriptions for
the two transitions; it is, for example, for k0

1 > 0,
∫

d3µp

∫
d3µq

[
(2π)3δ3(k1 − p − q)

× (−2π)δ(k0
1 − Ep − Eq)gV (1 → n)

]

×
[
(2π)3δ3(p + q − k2)(−2π)δ(Ep + Eq − k0

2)

× gV (2 → n)
]∗

, (23)

and unitarity is thus verified. For the complete and ampu-
tated Green function we merely have to multiply a real fac-
tor of ηλj (kj) for each external line and sum over λj . The
on-shell transition matrix is projected by k0

j → λjEkj
.

These manipulations do not lead to further problems. We
note that the reality of the NC vertices originating from
the hermiticity of Lint in (1) plays an important role. Cop-
ing with a single real scalar field would not make this point
so clear since Lint would be automatically hermitian. The
latter case may be recovered by symmetrization which is
already clear from our previous study.

2.2 Four-point function of real scalar field

As a second example to demonstrate unitarity and to show
applications of the prescriptions in [10], we consider the ϕ
four-point function arising from the interaction,

Lint = −gϕ � (χ � π + π � χ) � ϕ, (24)

where all fields are real again. The lowest order contri-
bution arises at one loop which has three Feynman dia-
grams. Here we shall consider only one of them, shown in

Fig. 1. Diagram corresponding to (25)

Fig. 1, while the other two may be obtained by permuta-
tion of indices. Their unitarity may be checked separately.
Each Feynman diagram corresponds to two time-ordered
diagrams which are represented collectively in Fig. 1 by
the parameter λ = ±. For the configuration of incoming
k1,2, λ1,2 and outgoing k3,4, λ3,4, we have

T (12 → 34) = −2πδ(k0
1 + k0

2 − k0
3 − k0

4)
∫

d3µp

∫
d3µq

×
∑

λ

[
(2π)3δ3(k1 + k2 − p − q)gV12

]

× [
(2π)3δ3(k3 + k4 − p − q)gV34

]
× [

λ(k0
1 + k0

2) − Ep − Eq + iε
]−1

, (25)

where

V12 =
[
e−i(k1λ1 ,−qλ,−pλ,k2λ2 ) + (qλ ↔ pλ)

]

+ (k1λ1 ↔ k2λ2),

V34 =
[
e−i(−k3λ3 ,qλ,pλ,−k4λ4 ) + (qλ ↔ pλ)

]

+ (k3λ3 ↔ k4λ4). (26)

(qλ ↔ pλ) is due to the hermitian arrangement of the χ
and π fields in Lint, while (k1λ1 ↔ k2λ2) or (k3λ3 ↔ k4λ4)
is from symmetrization in the two ϕ fields. We thus have

V12 = 22 cos[k1λ1 ∧ k2λ2 + (pλ + qλ) ∧ (k1λ1 − k2λ2)]
× cos(pλ ∧ qλ),

V34 = 22 cos[k3λ3 ∧ k4λ4 + (pλ + qλ) ∧ (k3λ3 − k4λ4)]
× cos(pλ ∧ qλ), (27)

which are real again and do not contribute to the imagi-
nary part of the transition matrix. For the ϕ4 interaction
of a single real scalar field, one merely has to symmetrize
V12 and V34 further by including all permutations.

The left-hand side of the unitarity relation is

−i[T (12 → 34) − T ∗(34 → 12)]
= (−i)(−2π)(−i2π)δ(k0

1 + k0
2 − k0

3 − k0
4)

×
∑

λ

∫
d3µp

∫
d3µq

[
(2π)3δ3(k1 + k2 − p − q)gV12

]

× [
(2π)3δ3(k3 + k4 − p − q)gV34

]
× δ

(
λ(k0

1 + k0
2) − Ep − Eq

)
, (28)

which becomes, e.g., for k0
1 + k0

2 > 0,∫
d3µp

∫
d3µq

[−(2π)4δ4(k1 + k2 − p+ − q+)gV12
]
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Fig. 2. Diagram corresponding to (32)

× [−(2π)4δ4(p+ + q+ − k3 − k4)gV34
]
, (29)

precisely the right-hand side of the unitarity relation. We
have also checked that the above result is identical to that
of an ab initio calculation.

2.3 Hermiticity of Lagrangian and unitarity of S-matrix

From the above two examples it is already clear that the
hermiticity of the interaction Lagrangian is crucial to pre-
serving unitarity as it is in ordinary theory. But they also
seem to indicate that only real NC couplings are allowed
for this purpose. If this were the case, NC field theory
would be much less interesting as far as the standard
model is concerned. We would like to clarify this point
in this subsection; namely, there is no obstacle for a com-
plex NC coupling to appear and the only requirement is
the explicit hermiticity of the interaction Lagrangian. We
also point out the difference in the hermiticity of the La-
grangian and action that is specific to perturbative NC
field theory and that has not been noticed so far. In the
meanwhile, we shall explain how this difference fits in the
framework of TOPT. All of these points cannot be prop-
erly realized in ϕ3 or ϕ4 theory of a single real scalar,
that has been most frequently used in the literature in
this context.

Let us consider the following interaction Lagrangian:

L′
int = −gϕϕ† � ϕ � σ − gχχ† � χ � σ, (30)

where σ (ϕ, χ) is a real (complex) scalar and the coupling
constants gϕ,χ are real. According to the understanding
in the naive approach, the above is well defined in the
sense that the action S′

int =
∫

d4xL′
int is hermitian by

using the cyclicity property of integrals of star products,
although L′

int is not in itself. The cyclicity argument in
turn is based on integration by parts and ignoring surface
terms. However, this integration by parts, when involving
time derivatives, may clash with the time-ordering proce-
dure in perturbation theory expanded in S′

int. Thus the
above argument may break down in perturbation theory
and cause problems. We have seen in [10] a similar case
of non-commutativity, i.e. that the time-ordering proce-
dure does not commute with star multiplication making
the naive approach not recoverable from the TOPT frame-
work when time does not commute with space.

To see the unitarity problem resulting from (30), it is
sufficient to consider the transition matrix for the follow-
ing scattering at tree level:

ϕ(k1, λ1) + ϕ†(k2, λ2) → χ(k3, λ3) + χ†(k4, λ4), (31)

where (k1,2, λ1,2) are incoming while (k3,4, λ3,4) are out-
going. kj ’s are not necessarily on-shell, and λj ’s are mean-
ingful only when their connections to vertices are specified
as we do in Fig. 2. The T -matrix for a fixed configuration
of λj ’s is,

T (12 → 34) = (−2π)δ(k0
1 + k0

2 − k0
3 − k0

4)
∫

d3µp

×
∑

λ

[
(2π)3δ3(k1 + k2 − p)gϕV ′

12
]

× [
(2π)3δ3(p − k3 − k4)gχV ′

34
]

× [
λ(k0

1 + k0
2) − Ep + iε

]−1

= −(2π)4δ4(k1 + k2 − k3 − k4)

×
∑

λ

gϕV ′
12gχV ′

34

2Ep[λ(k0
1 + k0

2) − Ep + iε]
, (32)

where p = k1 + k2, Ep = (p2 + m2
σ)1/2 and similarly for

other energies. The NC vertices are,

V ′
12 = exp[−i(k2λ2 , k1λ1 ,−pλ)],

V ′
34 = exp[−i(k3λ3 , k4λ4 ,−pλ)], (33)

where we have used (−a,−b, c) = (a, b,−c) for V ′
34. For

the inverse transition of incoming (k3,4, λ3,4) and outgoing
(k1,2, λ1,2), we have,

T (34 → 12) = (−2π)δ(k0
3 + k0

4 − k0
1 − k0

2)
∫

d3µp

×
∑

λ

[
(2π)3δ3(k3 + k4 − p)gχV̄ ′

34
]

× [
(2π)3δ3(p − k1 − k2)gϕV̄ ′

12
]

× [
λ(k0

3 + k0
4) − Ep + iε

]−1

= −(2π)4δ4(k1 + k2 − k3 − k4)

×
∑

λ

gϕV̄ ′
12gχV̄ ′

34

2Ep[λ(k0
1 + k0

2) − Ep + iε]
, (34)

with

V̄ ′
12 = exp[−i(k1λ1 , k2λ2 ,−pλ)],

V̄ ′
34 = exp[−i(k4λ4 , k3λ3 ,−pλ)]. (35)

Noting that V ′
ij �= V̄ ′∗

ij ; these factors will not factorize
when forming the difference on the left-hand side of the
unitarity relation, −i [T (12 → 34) − T ∗(34 → 12)]. On the
other hand, the right-hand side of the relation factorizes
of course,
∑

λ

∫
d3µp

× [−(2π)δ(k0
1 + k0

2 − λEp)(2π)3δ3(k1 + k2 − p)gϕV ′
12

]
× [−(2π)δ(k0

3 + k0
4 − λEp)(2π)3δ3(k3 + k4 − p)gχV̄ ′∗

34
]

= (2π)4δ4(k1 + k2 − k3 − k4)
1

2Ep

×
∑

λ

2πδ(k0
1 + k0

2 − λEp)gϕV ′
12gχV̄ ′∗

34 . (36)
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Unitarity is thus violated at tree level.
Let us take a closer look at what goes wrong in the

above. For example, using the spatial momentum conser-
vation at the vertex, we have,

2(k1λ1 , k2λ2 ,−pλ) = θ0i

[
(λEp − λ1Ek1 − λ2Ek2)p

i

+ (λ2Ek2k
i
1 − λ1Ek1k

i
2)

]

+ θijk
i
1k

j
2. (37)

Requiring V ′
jk = V̄ ′∗

jk (jk = 12, 34), which guarantees uni-
tarity, amounts to vanishing of the following:

(k1λ1 , k2λ2 ,−pλ) + (k2λ2 , k1λ1 ,−pλ)

= θ0i(λEp − λ1Ek1 − λ2Ek2)p
i, (38)

and similarly for jk = 34. We make a few observations on
the above result.

First, space-space NC does not pose a problem with
unitarity in the framework of TOPT. Namely, even if one
starts with a Lagrangian such as (30) which can only be
made hermitian by the cyclicity property, there will be
no problem as long as θ0i = 0. This is because the time-
ordering procedure in perturbation theory does not in-
terfere with the partial integration of spatial integrals em-
ployed in the cyclicity property. Furthermore, this freedom
in partial integration corresponds exactly to the spatial
momentum conservation at each separate vertex of TOPT.
Conversely, we do not have such a freedom in temporal in-
tegration, which would spoil the time-ordering procedure,
so that the temporal component of momentum does not
conserve at each separate vertex in TOPT. But still we
have a global conservation law for it which corresponds to
the same amount of shift for all time parameters without
disturbing their relative order.

Second, for the particular example considered here,
when all external particles are on-shell, we still have a
chance to saturate unitarity even if θ0i �= 0. For instance,
when all k0

j = Ekj
and λj = +, only λ = + contributes

to the unitarity relation so that unitarity holds true if
Ep = Ek1 +Ek2 = Ek3 +Ek4 . For the off-shell transition,
which is a sum over all configurations of λj and λ, (38)
cannot always vanish and thus there is no unitarity for
the off-shell function. For transitions involving more than
one internal line or loops so that we may have more free-
dom in spatial momenta of intermediate states, vanishing
of similar combinations cannot be generally fulfilled. Thus
we should not rely on this even for a cure to S-matrix uni-
tarity. The same comment also applies to the kinematical
configuration of θ0ip

i = 0.
The solution to this problem is already clear from

the above discussion. Whenever time-space NC enters, we
should make the interaction Lagrangian explicitly hermi-
tian before we do perturbation. In our example, instead
of (30), we should start with the following one:

Lint = −gϕ

2
(ϕ† � ϕ � σ + σ � ϕ† � ϕ)

− gχ

2
(χ† � χ � σ + σ � χ† � χ). (39)

The only effect of this rearrangement is the substitution
of the above primed vertices by the following ones:

V12 =
1
2

[
e−i(k2λ2 ,k1λ1 ,−pλ) + e−i(−pλ,k2λ2 ,k1λ1 )

]
,

V34 =
1
2

[
e−i(k3λ3 ,k4λ4 ,−pλ) + e−i(−pλ,k3λ3 ,k4λ4 )

]
, (40)

and then
V̄12 = V ∗

12, V̄34 = V ∗
34, (41)

which guarantees unitarity for any configurations since the
difference on the left-hand side of the unitarity relation
arises only from the physical threshold. More explicitly,
we have, e.g.,

V12 = exp(−ik2λ2 ∧ k1λ1) cos ((k1λ1 + k2λ2) ∧ pλ) , (42)

which is a complex coupling indeed.
As a final example, we would like to illustrate the in-

terplay between the hermiticity of the Lagrangian and
the contributions from complex conjugate intermediate
states. We consider the one-loop induced σ → ρ transi-
tion through the following interactions:

Lint = −(gσχ† � π � σ + g∗
σσ � π† � χ)

− (gρχ � π† � ρ + g∗
ρρ � π � χ†), (43)

where χ, π are complex scalars and ρ, σ are real ones with
generally complex couplings gσ, gρ. There are two Feyn-
man diagrams with conjugate virtual particle pairs χπ†
and χ†π respectively, and each of them has two time-
ordered diagrams depicted collectively in Fig. 3. We write
down their contributions directly,

Tχπ†(σ(k1, λ1) → ρ(k2, λ2))

= −(2π)4δ4(k1 − k2)gσgρ

×
∫

d3µp

∫
d3µq(2π)3δ3(k1 − p − q)

×
∑

λ

VσVρ

λk0
1 − Ep − Eq + iε

,

Tχ†π(σ(k1, λ1) → ρ(k2, λ2))

= −(2π)4δ4(k1 − k2)g∗
σg∗

ρ

×
∫

d3µp

∫
d3µq(2π)3δ3(k1 − p − q)

×
∑

λ

V ∗
σ V ∗

ρ

λk0
1 − Ep − Eq + iε

, (44)

with Vσ = e−i(qλ,pλ,−k1λ1 ), Vρ = e−i(qλ,pλ,−k2λ2 ). Similarly,
for the inverse transition ρ → σ, we have

Tχπ†(ρ(k2, λ2) → σ(k1, λ1))

= −(2π)4δ4(k1 − k2)g∗
σg∗

ρ

×
∫

d3µp

∫
d3µq(2π)3δ3(k1 − p − q)

×
∑

λ

V ∗
σ V ∗

ρ

λk0
1 − Ep − Eq + iε

,
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Fig. 3. Diagrams corresponding to (44)

Tχ†π(ρ(k2, λ2) → σ(k1, λ1))

= −(2π)4δ4(k1 − k2)gσgρ

×
∫

d3µp

∫
d3µq(2π)3δ3(k1 − p − q)

×
∑

λ

VσVρ

λk0
1 − Ep − Eq + iε

. (45)

Thus, with gσ and gρ coupling terms alone (or their con-
jugate terms alone) it is impossible to fulfill unitarity be-
cause even the action is not hermitian. If the action is her-
mitian, it is always possible to make the Lagrangian her-
mitian too. Once this is done, unitarity holds individually
for the two conjugate intermediate states of χπ† and χ†π.
This is precisely the same phenomenon occurring in ordi-
nary field theory as may be easily checked for the above
example.

3 Conclusion

In a previous paper we proposed a framework to do per-
turbation theory for NC field theory which is essentially
the time-ordered perturbation theory extended to the NC
case. In contrast to ordinary field theory, this framework is
not equivalent to the naive, seemingly covariant one pur-
sued in the literature due to the significant change of ana-
lyticity properties introduced by NC phases. In the present
paper we examined the impact of this change on the uni-
tarity problem occurring in the naive approach when time
does not commute with space, and arrived at a different
result on the fate of unitarity. Our main conclusion is that
there is no problem with unitarity in TOPT as long as the
interaction Lagrangian is explicitly hermitian. We showed
this explicitly in examples and then extended that result.

The key observation in distinguishing the hermiticity
of the Lagrangian and that of the action in NC field the-
ory is that the manipulation with the cyclicity property
in spacetime integrals of star products may clash with the
time-ordering procedure in perturbation theory. In ordi-
nary theory there is no similar problem arising from inte-
gration by parts in the action because, even if one takes
it seriously at the beginning, one can always remove it by
going back to the covariant formalism by analytic contin-
uation. However, in NC theory with time-space NC, as we
argued previously, this continuation is not possible at least
in the naive sense. It thus makes difference whether the
Lagrangian is explicitly hermitian or not. But we would
like to stress again that requiring hermiticity of the La-
grangian does not forbid complex NC couplings to appear.

The main drawback of TOPT, as it is in ordinary the-
ory, is its rapidly increased technical complication when
going to higher orders in perturbation. It would be highly
desirable if it could be recast in a more or less covariant
form.

Acknowledgements. Y.L. would like to thank M. Chaichian for
a visit at the Helsinki Institute of Physics and its members
for hospitality. He enjoyed many encouraging discussions with
M. Chaichian, P. Presnajder and A. Tureanu. K.S. is grateful
to D. Bahns and K. Fredenhagen for clarifying discussions on
their work.

References
1. A. Connes, M.R. Douglas, A. Schwarz, J. High Energy

Phys. 02, 003 (1998) [hep-th/9711162]; M.R. Douglas, C.
Hull, ibid. 02, 008 (1998) [hep-th/9711165]; C.-S. Chu, P.-
M. Ho, Nucl. Phys. B 550, 151 (1999) [hep-th/9812219];
ibid. B 568, 447 (2000) [hep-th/9906192]; V. Schomerus,
J. High Energy Phys. 06, 030 (1999) [hep-th/9903205]; N.
Seiberg, E. Witten, ibid. 09, 032 (1999) [hep-th/9908142]

2. S. Minwalla, M.V. Raamsdonk, N. Seiberg, J. High Energy
Phys. 02, 020 (2000) [hep-th/9912072]; I. Ya. Aref’eva,
D.M. Belov, A.S. Koshelev, Phys. Lett. B 476, 431 (2000)
[hep-th/9912075]; M.V. Raamsdonk, N. Seiberg, J. High
Energy Phys. 03, 035 (2000) [hep-th/0002186]; A. Matusis,
L. Susskind, N. Toumbas, J. High Energy Phys. 12, 002
(2000) [hep-th/0002075]

3. J. Gomis, T. Mehen, Nucl. Phys. B 591, 265 (2000) [hep-
th/0005129]

4. For subsequent discussions on unitarity, see for example: J.
Gomis, K. Kamimura, J. Llosa, Phys. Rev. D 63, 045003
(2001) [hep-th/0006235]; O. Aharony, J. Gomis, T. Mehen,
J. High Energy Phys. 09, 023 (2000) [hep-th/0006236]; M.
Chaichian, A. Demichev, P. Presnajder, A. Tureanu, Eur.
Phys. J. C 20, 767 (2001) [0007156]; R.-G. Cai, N. Ohta,
J. High Energy Phys. 10, 036 (2000) [hep-th/0008119];
L. Alvarez-Gaume, J.L.F. Barbon, R. Zwicky, J. High En-
ergy Phys. 05, 057 (2001) [hep-th/0103069]; T. Mateos, A.
Moreno, Phys. Rev. D 64, 047703 (2001) [hep-th/0104167];
A. Bassetto, L. Griguolo, G. Nardelli, F. Vian, J. High En-
ergy Phys. 07, 008 (2001) [hep-th/0105257]; C.-S. Chu, J.
Lukierski, W.J. Zakrzewski, Hermitian analyticity, IR/UV
mixing and unitarity of non-commutative field theories,
hep-th/0201144

5. N. Seiberg, L. Susskind, N. Toumbas, J. High Energy
Phys. 06, 044 (2000) [hep-th/0005015]; L. Alvarez-Gaume,
J.L.F. Barbon, Int. J. Mod. Phys. A 16, 1123 (2001) [hep-
th/0006209]

6. S. Doplicher, K. Fredenhagen, J.E. Roberts, Commun.
Math. Phys. 172, 187 (1995)

7. T. Filk, Phys. Lett. B 376, 53 (1996)
8. D. Bahns, S. Doplicher, K. Fredenhagen, G. Piacitelli,

Phys. Lett. B 533, 178 (2002) [hep-th/0201222]; see also:
C. Rim, J.H. Yee, hep-th/0205193

9. C.N. Yang, D. Feldman, Phys. Rev. 79, 972 (1950)
10. Y. Liao, K. Sibold, Time-ordered perturbation theory on

non-commutative spacetime: basic rules, hep-th/0205269
11. S.S. Schweber, An introduction to relativistic quantum

field theory (Harper & Row, 1961)
12. G. Sterman, An introduction to quantum field theory

(Cambridge University Press, 1993)


